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Abstract

Contingent capital (CC), which intends to internalize the costs of too-big-to-fail in
the capital structure of large banks, has been under intense debate by policy makers
and academics. We show that CC with a market trigger, in which direct stake-holders
are unable to choose optimal conversion policies, does not lead to a unique compet-
itive equilibrium, unless value transfer at conversion is not expected ex-ante. The
“no value transfer” restriction precludes penalizing bank managers for taking excessive
risk. Multiplicity or absence of an equilibrium introduces the potential for price un-
certainty, market manipulation, inefficient capital allocation, and frequent conversion
errors. These results point to the need to explore alternative designs of a prudential
capital structure for banks.
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One of the lessons learned from the financial crisis of 2007–2009 is that the capital structure

and financial insolvency procedures of banks and financial institutions need a major overhaul.

The bail-out of Bear Stearns and AIG, the public assistance to Citigroup and Bank of

America, and the freeze of the financial system after Lehman Brothers’ bankruptcy have

demonstrated the need to revisit the financial insolvency procedures. In particular, the

extensive amount of implicit guarantees, outright infusion of taxpayer money and other

benefits extended to large financial institutions have come under scrutiny. Recognizing these

lessons, the U.S. Congress has passed the Dodd-Frank Act1 and the Basel Committee has

moved to strengthen bank regulation with Basel III.2 A central issue in the debate on these

new regulations is the design of a prudential capital structure that ensures enough loss-

absorbing capital in large financial institutions and removes the need of public bailout.3

In the pursuit of a prudential capital structure of banks, there has been considerable

interest in contingent capital (CC), a debt security that converts into equity in periods of

distress when a bank has low capitalization but can still be recapitalized as a going concern.4

Some academic researchers and regulatory agencies have argued that such a security may

mitigate the “too big to fail” problem and reduce the systemic risk in financial industry for

the following reasons: first, CC can overcome the reluctance of raising equity in a good state

because it does not dilute earnings when it functions as debt (HM Treasury (2009)); second,

a timely conversion of a sufficiently large CC restores the level of loss-absorbing equity in

1The Dodd-Frank Act is the Wall Street Reform and Consumer Protection Act (Pub.L. 111-203, H.R.
4173), a federal statute in the United States signed into law on July 21, 2010 by President Barack Obama.

2Basel III is a set of new capital and liquidity standards agreed by the Basel Committee. For a summary
of its elements, see Bank for International Settlements (2011).

3For example, Kashyap, Rajan, and Stein (2008) have proposed that banks buy “systemic risk insurance”
and secure the payouts on insurance. Admati and Pfleiderer (2010) have argued for increasing the liability
of owners (equity holders) and suggest that such a structure will mitigate the conflicts of interests between
equity and debt holders and may help reduce the need for bailouts. Admati, DeMarzo, Hellwig and Pfleiderer
(2010) suggest a significant increase in equity capital.

4It is necessary to distinguish CC from bail-in debt, another convertible security proposed by Credit Suisse
(The Economist (2010)). Unlike CC, a bail-in debt converts into equity when the bank enters into resolution
as a gone concern. Since pre-existing equity holders’ stake is wiped out at resolution, the analysis in our
paper does not apply to a bail-in debt.
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a bad state, overcoming the difficulty of raising equity caused by debt overhang, recapital-

izing the highly levered bank as a going concern, and reducing financial distress (Squam

Lake Working Group (2010)); third, it has been argued that the potential for a “punitively

dilutive” conversion of contingent debt sets the right incentives for managers to avoid ex-

cessive risk taking, and encourages them to maintain higher capital ratios (Himmelberg and

Tsyplakov (2012)).5 Based on these arguments, some academics and industry lobbyists have

urged the governments to let banks use CC as regulatory capital. Against this backdrop,

Section 115(c) of the Dodd-Frank Act mandates that the U.S. regulators must study, with

a two-year deadline, whether requiring banks to issue CC reduces the systemic risk caused

by large financial institutions and what the proper design of CC contracts should be.

In the debate of a proper design of CC, the trigger for the conversion from debt to equity

is perhaps the most important and controversial. Many trigger designs have been discussed

in the literature, including triggers determined by accounting ratios (Squam Lake Group

(2010)), regulatory discretion (Dickson (2010)), and bank management’s option (Glasserman

and Wang (2011) and Bolton and Samama (2011)). There are concerns about each of these

triggers. Accounting triggers tend to be backward looking and are prone to manipulation by

managers.6 Regulatory discretion potentially suffers from insufficient information, ineffective

monitoring, and political pressures. Giving the option to convert to bank managers may

result in an overdue conversion or no conversion, especially if the conversion is dilutive and

the managers anticipate a bail out.

Because of these concerns, many academics and regulators have turned attention to

5Currently, economic theory does not offer a coherent theoretical framework on just how punitive the
conversion should be in order to curtail the incentive for excessive risk-taking, but scholars, regulators, and
practitioners refer to punitive conversion as a desirable feature for CC to be used as a tool to manage both
the agency problem and the capital structure.

6The use of Repo 105 by Lehman Brothers and the SPVs by Enron are two visible cases of such manip-
ulation, with disastrous consequences. In the month of bankruptcy, Lehman Brothers tier-one capital ratio
was 10.1%. In the month immediately before Bear Stearns was bailed out, its capital ratio was estimated to
be 13.5%. These capital ratios were even above the new capital requirement in Basel III.
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triggers placed on market prices, which are our focus.7 Placing a mandatory-conversion

trigger on an observable market value of a publicly-traded security is thought to ensure that

conversion is based on a criteria that is informative, objective, timely, difficult to manipulate,

and independent of regulators’ intervention, avoiding the problems associated with other

types of triggers. For this purpose, the price of the security serving as a trigger should be

a timely indicator of the expected financial difficulties of the bank that issues the CC, and

thus the security should be junior to CC as a claim on the firm. Since CC becomes common

equity after conversion, the only financial claim that is junior to CC is common equity. This

makes common equity the natural choice for placing the market trigger.

We show that a CC with a market equity trigger does not in general lead to a unique

competitive equilibrium in the prices of the issuing bank’s equity and CC. Multiplicity or

absence of an equilibrium arises because the stake holders are not given the option to choose

a conversion policy in their best interests. This problem exists even if banks can issue new

equity to avoid conversion. The equilibrium problem is more pronounced when a bank’s

asset value has jumps and when bankruptcy is costly. Jumps in asset values and bankruptcy

costs are considered in our analysis because they are the reality of banking industry.

We prove that for a unique competitive equilibrium to exist, a mandatory conversion must

not transfer value between equity holders and CC investors. This necessary condition for

a unique equilibrium causes two problems. First, this condition prevents punishing equity

holders at conversion. This is problematic because punitive conversion is referred to by

regulators and academics as a desirable feature to generate the incentives for bank managers

to avoid excessive risk taking. Second, the necessary condition implies that CC cannot be

practically designed so that the market has a unique equilibrium because the conversion ratio

in the contract has to be a function of the market value of the contract. In particular, a CC

7To our knowledge, Flannery (2002, 2009) was an early advocate of CC with a market trigger for manda-
tory conversion.
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contract with a constant conversion trigger and conversion ratio generally does not have a

unique equilibrium.8 We also show that multiple equilibria exist even when financial distress

costs are present. In this case, CC can even cause multiple equilibria in firm value and

senior bond because an early conversion equilibrium, if it exists, may reduce the expected

dead-weight loss associated with financial distress.

In the case of multiple equilibria, our analysis shows that equity holders prefer the

“late/no conversion” equilibrium whereas the CC holders prefer the “early conversion” equi-

librium. If a CC of this design were to be issued by a bank, and the stock price subsequent

to the issuance were to approach the trigger level, equity holders would have an incentive to

manipulate the stock price up and keep it above the trigger. By the same token, contingent

capital holders would have the incentive to manipulate the stock price down so that it hits

the trigger to force conversion.

Intuitively, and in view of the classic microeconomic theory, the lack of a unique com-

petitive equilibrium should be a serious concern to the regulators: if CC with a market

trigger is used for regulation, it may introduce the potential for price uncertainty, market

manipulation, and inefficient capital allocation. The recent experiments conducted by Davis,

Prescott and Korenok (2011) underpin this concern and report that conversion errors occur

regularly in the absence of a unique equilibrium. In addition, the multiple equilibria may

invite market manipulation, as mentioned earlier. Price manipulation of this kind has been

witnessed in barrier options (The Economist (1995)). These results suggest that regulators

should use caution in pursuing CC with market triggers in the design of capital structure

for banks, and also point to the need to explore alternative designs of prudential capital

structure for banks.

8In contrast, under the unrealistic assumptions that asset value has no jump risk and the conversion
condition can be verified continuously, we show that it is possible to design a CC contract with a constant
conversion trigger and ratio so that a unique equilibrium exists.
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Our paper is related to Bond, Goldstein and Prescott (2010), who show that potential

intervention by regulators who make decisions based on asset price can lead to loss of in-

formation about the asset value. The two papers share a similarity in the no-equilibrium

case. With a mandatory trigger placed on the market price of equity, one can think of regu-

lators responding to the information in the equity price.9 One of the distinct features of our

analysis is that multiple equilibra may arise in the case of CC.

The road map for this paper is as follows. In section I, we provide intuition for the

equilibrium problem and discuss the concerns. In section II, under the assumption that the

asset value exhibits smooth diffusive shocks as well as jump risk and bankruptcy costs, we

derive the condition for an equilibrium to exist and be unique and numerically illustrate the

range of multiple equilibria. In Section III, we analyze equilibria under alternative market

conditions. In Section IV we conclude.

I The Intuition for the Pricing Problem

The main thrust of our paper is the following: When triggers for mandatory conversion are

placed directly on the market value of equity, there is a need to ensure that conversion does

not transfer value between equity holders and CC holders when equity value hits exactly the

trigger level. The economic intuition behind this design problem is as follows. A contingent

capital is essentially a junior debt that converts to equity shares when the stock price reaches

a certain low threshold. This sounds like a normal and innocuous feature. However, the

unusual part of the CC design is that conversion into equity is mandatory as soon as the

stock price hits the trigger level from above. Since common equity is the residual claim of

the bank’s value, it must be priced together with the CC. Keeping the firm value and senior

bond value fixed, a dollar more for the CC value must be associated with a dollar less for

9Bond, Edmans, and Goldstein (2012) provide a survey and general discussion of these issues.
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the equity value. Therefore, a transfer of value between equity and CC disturbs price by

moving the stock value up or down depending on the conversion ratio. To have a unique

equilibrium, the design of the conversion ratio must ensure that there is no such transfer of

value.

If the transfer of value never pushes the stock price across the trigger, there is no problem

because, given each asset value, investors always know whether or not there will be a conver-

sion. However, if the transfer of value pushes the stock price across the trigger from above

to below, there are two possible equilibria. In the first one, all investors believe conversion

will not happen, leading the equity value to stay above the trigger. In the second one, all

investors believe conversion will happen, leading the equity value to hit the trigger. Since

two values are possible whenever the firm’s value drops to a certain level, by combining these

dual equilibria around the trigger at different times in the future, numerous expected equity

values are possible well before conversion happens. These numerous values can form a range,

and the whole range can be above the trigger.

There are also economic conditions in which CC with a market trigger may not even

have an equilibrium price. This happens if equity value would fall below the trigger without

conversion but conversion would push the stock price above the trigger level by transferring

value from the CC holders to the equity holders. In this case, investors cannot believe that

conversion will not happen because with such a belief, equity value will fall below the trigger

and the CC must convert. Investors cannot believe that conversion will happen either because

with such a belief, the equity price will stay above the trigger level and the CC must not

convert. Therefore, there is no belief and stock price that are consistent with the mandatory

conversion rule of the CC. Then, there is no rational expectations equilibrium in the values

of equity and CC.

The only way to prevent multiplicity or absence of equilibrium is to ensure that no value
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is transferred when the equity value hits the trigger. If economic agents are permitted to

convert in their self interest, they would select the optimal conversion strategy endogenously

by comparing the value of conversion with the value of holding CC unconverted but taking

into account optimal future conversion strategies. This, however, is prevented by the design

of CC in which conversion is mandatory and dictated by the equity value. The zero value

transfer condition requires that, at all possible conversion times, the value of shares converted

at the trigger price must be exactly the same as the market value of the non-converted CC.

Although methods for pricing of subordinated debt and equity are established, the pricing

of contingent capital with a market trigger poses special challenges. In this section, we illus-

trate these challenges in discrete time, leaving the formal analysis in dynamic continuous-time

models to the next section. The analysis in discrete time demonstrates that the conversion

trigger and ratio cannot be chosen arbitrarily if we want a unique equilibrium price to exist.

Let us first describe a bank that has a capital structure with CC. Consider a bank that has

senior bondholders and common-equity holders who have claims on an asset (or a business).

The asset requires an investment of A0 dollars today (time 0). The asset is typically risky;

its value at time t is a random number At. At time 0, the bank has also issued a security

called “contingent capital.” The security is in the form of a debt (or preferred equity) with

face value C̄, which is junior to the bond but converts to common equity when certain

pre-specified conditions are met.10

The contingent capital with market trigger sets the conversion condition on the bank’s

equity value. Suppose St is the stock price of this bank and there are n shares outstanding.

At any time t, the bank converts the junior debt under the contingent capital to mt shares of

common equity as soon as the equity value nSt falls to the level Kt or lower. The quantity mt

10To keep the analysis simple, we assume in this section that the contingent capital does not pay a coupon
or dividend. We make a similar assumption for the bond. Also, we assume that the asset does not generate
cash flow. We will relax these assumptions in the next section.
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is referred to as the conversion ratio and Kt as the conversion trigger. The conversion trigger

is hit if the stock price reaches Kt/n, which is referred to as the trigger price. If n = 1, the

conversion trigger and trigger price are the same. In general, the conversion ratio and trigger

are either constant or pre-specified functions of observable variables. A particular contract

specifies the conversion ratio m(·) and trigger K(·) as functions of observable variables over

time.

The following are two examples of contingent capital contracts. The simple form of

contingent capital can have a constant trigger K and a constant conversion ratio m. The

contingent capital contracts proposed in the literature typically have a time-varying conver-

sion trigger and ratio. The one suggested by Flannery (2002) specifies that Kt = z ·RWAt/n,

where RWAt is the most recent risk-weighted asset value and z is a constant related to reg-

ulatory capital ratios. To ensure that the converted shares and the CC have the same value

if conversion happens at the trigger price on maturity date, the conversion ratio should be

set to mt = nC̄/Kt. Since the risk-weighted asset changes only at the end of each quarter,

this contingent capital takes the simple form after its last change of risk-weighted asset, if it

is not converted by then.

I.A The Pricing Restriction at Maturity

First consider the equilibrium stock price at the maturity, which is time T . The bank’s asset

will finish at certain value AT , which is random. The par value of the bank’s senior bond is

B̄, at maturity. The bank’s contingent capital, which also matures at the same time, has a

par value of C̄. The trigger of the contingent capital is K. The bank has n shares of equity.

We suppose that the contingent capital has not been converted because the asset value has

been so high that the equity value is above the trigger. At maturity, if the CC is still not
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converted, the stock price should be

SuT = (AT − B̄ − C̄)/n. (1)

If the CC is converted, the stock price should be

ScT = (AT − B̄)/(n+m). (2)

The above pricing formula and the CC’s trigger rule lead to the non-conversion and

conversion criteria in terms of asset value: (a) Since the CC stays unconverted at maturity

if and only if nSuT > K, equation (1) implies that there is no conversion if and only if

AT > B̄+K+ C̄; (b) Since the CC should be converted at maturity if and only if nScT ≤ K,

equation (2) implies conversion happens if and only if AT ≤ B̄ +K + (m/n)K.

From the conversion criteria in terms of asset value, we can see the pricing restriction on

the CC’s conversion ratio. If C̄ < (m/n)K, the asset value AT can fall into (B̄+K+ C̄, B̄+

K + (m/n)K]. Then, both criteria for non-conversion and conversion are met. In this case,

there are multiple equilibria in stock prices. One price is above the trigger price and the other

is below. If C̄ > (m/n)K, the asset value AT can fall into (B̄ +K + (m/n)K, B̄ +K + C̄).

Then, neither the criteria for non-conversion or conversion is met. In this case, there is no

equilibrium stock price. If and only if C̄ = (m/n)K, will we have either AT > B̄+K + C̄ or

AT ≤ B̄ +K + (m/n)K, but not both, for all asset value AT . In this case, there is always a

unique equilibrium. Therefore, a unique equilibrium always exists at maturity if and only if

C̄ = mK/n or m = nC̄/K. The last equation implies that the conversion ratio is restricted

by other parameters if we want to assure a unique equilibrium.

As a numerical example, let n = 1, B̄ = 90, C̄ = 10 and K = 5. Notice that nC̄/K = 2.

If m = 3, which is higher than 2, then there can be multiple equilibria when the asset value

turns out to be AT = 106. One equilibrium stock price is SuT = (106− 90− 10)/1 = 6, which
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is above the trigger, and the other is ScT = (106− 90− 10)/(1 + 3) = 4, which is below the

trigger. If m = 1, which is smaller than 2, then there is no equilibrium when the asset value

turns out to be AT = 104. This is because the stock price associated with non-conversion

is SuT = (104 − 90 − 10)/1 = 4, lower than the trigger, and stock price associated with

conversion is ScT = (104− 90)/(1 + 1) = 7, higher than the trigger. However, one can easily

verify that these cases of multiple or no equilibrium do not occur if m = 2.

The above analysis of zero value transfer condition at maturity is simple because if the

contingent capital does not convert at maturity, the value of contingent capital is simply its

face value C̄. The conversion ratio m = nC̄/K does not transfer value at trigger price on

maturity date because if the stock price hits on the trigger, the contingent capital investors

receive mST = m(K/n) dollars, which is the same C̄ dollars they would have received in the

absence of conversion.

I.B The Pricing Restriction Before Maturity

The conversion ratio that guarantees zero value transfer at the trigger price on maturity date

may still transfer value at the trigger price on some days before maturity, causing multiple

equilibria. To ensure a unique equilibrium, the pricing restriction needs to hold at any

possible conversion time t: Ct = mK/n. To see this intuitively, we can repeat the previous

analysis by switching T to t. Then, with C̄ = mK/n, two possibilities may arise. The first

possibility is Ct = C̄ = mK/n at any time before conversion and before default.11 The other

possibility is Ct 6= mK/n at some possible conversion time. This can lead to multiple or no

equilibrium at this time, translating to multiplicity or absence of equilibrium in the initial

price.

In a one-period discrete-time model, it is easy to show that keeping conversion ratio fixed

11For this to happen, the economic system needs to satisfy certain restrictive conditions later described
by Theorem 3 in Section III-III.A.
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as m = nC̄/K through the period allows multiple equilibrium in the initial equity and CC

prices. In the discrete model, all securities are priced and traded at the initial time of the

period, t = 0, and the terminal time, t = T , when both the bond and CC matures. The

initial asset value is A0, and the terminal value, AT , is a random variable. Let P (·) and p(·)

be the CDF and PDF, respectively, of the risk neutral distribution. To keep things simple,

assume the risk-free rate is zero. With face value B̄, the initial value of the bond is

B0 = B̄(1− P (B̄)) +
∫ B̄

0
ATp(AT )dAT . (3)

With face value C̄, the initial value of the CC, if it is not converted at time 0, is

Cu
0 = C̄(1− P (B̄ + C̄ +K)) +

m

n+m

∫ B̄+C̄+K

B̄
(AT − B̄)p(AT )dAT . (4)

Given m = nC̄/K, the maximum payoff the CC holders may receive is C̄. This implies

Cu
0 ≤ C̄, which can also be verified by some trivial algebra.

The stock value at time 0 depends on whether the CC is converted. If the CC is not

converted, the stock value is Su0 = (A0 − B0 − C0)/n. It follows from the condition for

no-conversion, nSu0 > K, that the CC is not converted if and only if A0 > B0 + C0 + K. If

the CC is converted, the stock value is Sc0 = (A0 − B0)/(n + m). Because the condition for

conversion is nSc0 ≤ K, the CC is converted if and only if A0 ≤ B0 + (m/n)K + K. This

inequality is equivalent to A0 ≤ B0 + C̄ + K, in view of m = nC̄/K. Since C0 < C̄, the

interval (B0 + C0 + K, B0 + C̄ + K] is nonempty. For every A0 in this interval, both the

conditions for no-conversion and conversion hold, and thus there are two equilibrium stock

prices, Su0 and Sc0. The CC price associated with Su0 is Cu
0 . With conversion at time 0, the

value received by the CC holders is the value of m shares: Cc
0 = mSc0.

As a numerical example, let B̄ = 90, C̄ = 10, K = 5, m = 2, and n = 1. Notice

that m = nC̄/K holds for these parameters. Assume that the probability distribution of

AT is discrete: p{AT = 80} = 0.25, p{AT = 100} = 0.50, and p{AT = 120} = 0.25. It
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follows that A0 = E[AT ] = 100. Straightforward calculation, using equations (3) and (4),

gives B0 = 87.50 and Cu
0 = 5.83. Then, no conversion at time 0 is an equilibrium because

nSu0 = 100− 87.50− 5.83 = 6.67, which is higher than the trigger K = 5. Conversion is also

an equilibrium because nSc0 = (100− 87.50)/(1 + 2) = 4.17, which is below the trigger. The

CC values associated with the two equilibria are Cu
0 = 5.83 and Cc

0 = 8.33. To visualize the

two equilibria intuitively, this example is displayed as a trinomial tree in Figure 1.
Insert
Fig.1
around
hereIn the numerical example, the two equilibria leave the stock price and CC value unde-

termined before maturity. Multiple equilibria occurred on a node before maturity because

the conversion ratio, m = 2, is too high at time 0 and transfers value from equity holders to

contingent capital investors. To prevent such a value transfer, we need to set the conversion

ratio so that, at time 0, the value of the converted shares at trigger price equals the value of

the non-converted contingent capital. As shown in Figure 1, the non-converted contingent

capital is valued as $5.83 on this node. Accordingly, the conversion ratio should be set to

m = 5.83/K = 5.83/5 = 1.166. To use this conversion ratio, we need to know the value

of the non-converted contingent capital on this node. To know the value of non-converted

CC at every time and in every state is not practical for two reasons: first, the conversion

ratio is typically specified ex-ante, and second, relying on a market price of CC for every

future state to determine the conversion ratio is not judicious because the specification of a

contract should not depend on the future market price of the contract itself.

The above example illustrates an important problem. With a CC based on market trig-

gers and mandatory conversion, equity holders prefer the “late/no conversion” equilibrium

as their value is higher in that equilibrium. On the other hand, contingent capital holders

prefer the “early conversion” equilibrium as their values are higher in that equilibrium. If a

CC of this design were to be issued by a bank, and the stock price subsequent to the issuance

approaches the trigger level, equity holders would have an incentive to manipulate the stock
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price up and keep it above the trigger. By the same token, contingent capital holders would

have the incentive to manipulate the stock price down so that it hits the trigger to force

conversion. For this reason, CC holders have an incentive to sell the bank stock short. If

they succeed in forcing the stock to hit the trigger, they can cover their short positions

using the new shares that have been issued by the bank to fulfill the mandatory conversion.

Consequently, a bank’s equity price can be volatile when it approaches the trigger level.

The discussion in this section is meant to illustrate the challenge in the design of CC. To

formally establish the pricing restriction, in the next section we use a dynamic continuous-

time framework in which the bank asset value follows a general stochastic process, which al-

lows for both continuous changes and discontinuous jumps. We also assume that bankruptcy

is costly, deviating from Modigliani and Miller’s world. In such a dynamic setting we show

the pricing restriction under which we can obtain a unique equilibrium. When the restriction

is breached, multiplicity or absence of equilibria may occur in the market.

I.C The Issues with the Equilibrium Problem

In general, what will be the consequence of the equilibrium problem associated with contin-

gent capital? The classic economic theory tells us that a unique competitive equilibrium is

generally associated with stable prices and efficient allocation. Stability follows from the law

of supply and demand. When a market price deviates from the unique equilibrium point, the

forces of supply and demand will push the price towards the equilibrium. This dynamics is

modeled as a tatonnement process. Efficiency follows from the welfare theorems of compet-

itive equilibrium. When there are multiple equilibria, the economic system is unstable. An

example of multiple equilibrium is the Diamond and Dybvig (1983) model, in which there

can be an equilibrium with bank runs. More restrictions can be imposed on Diamond and

Dybvig’s economy to allow a unique equilibrium, but such an equilibrium is inefficient.
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In the case of a derivative security, a deviation from its equilibrium price is often associ-

ated with arbitrage opportunities, leading to arbitrage activities of rational investors which

will force the price toward the equilibrium. Without a unique equilibrium price, contingent

capital does not fit into the basic economic theory. Consequently, we conjecture the following.

First, unlike a security with a unique equilibrium price, CC may not preclude the potential

for price instability and inefficient capital allocation. Second, in the case of multiple equilib-

ria, we note that the incentives of CC-holders are aligned towards the equilibrium with early

conversion, whereas the incentives of equity holders are aligned towards the equilibrium that

delays or avoids conversion. The conflicting incentives of the CC and equity holders towards

different equilibria may cause price instability. Third, the lack of a unique equilibrium for

the price to converge may leave the price to be determined by uncertain forces, leading to

uncertainty in investors’ formation of price expectations. As a result, it is possible that the

final distribution of capital may be inefficient in the sense that capital is not held by those

who value it the most.

Will the equilibrium problem of contingent capital actually cause price uncertainty and

inefficient allocation? There is no economic framework available to answer this question

analytically. In this situation, researchers typically search for empirical evidence, but relevant

data are not available because CC with a market trigger is still a regulatory proposal, not yet

implemented in practice. However, the recent development in experimental economics sheds

some light on our earlier conjectures. Davis, Prescott and Korenok (2011) have recently

conducted laboratory experiments in trading contingent capital. In their experiments, a

security’s intrinsic value, which is random, takes a haircut of a fixed amount if the aggregate

market price of the security is below a certain threshold, resembling the equity of a bank that

has issued a punitive CC with a market trigger. The results of their laboratory experiments

are broadly in conformity with the observations made in the preceding paragraph. They show
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that excessive price uncertainty and inefficient allocation reign in their experimental market

when the security has multiple equilibrium prices. In addition, they document frequent

conversion errors; a conversion error is a situation when the security’s intrinsic value is

above the threshold but the haircut takes place or a situation when the security’s intrinsic

value is below the threshold but the haircut does not take place. They also experiment with

a security that resembles a CC that rewards equity holders at conversion and find that price

uncertainty, allocation inefficiency, and conversion error still reign in their experimental

market. Very interestingly, Davis et al. also report that after introducing regulators who

make conversion decisions by inferring the intrinsic value from trading prices, the problems of

price uncertainty, allocation inefficiency, and conversion error stay the same. This underlines

the potential weaknesses in a regulatory trigger in the design of contingent capital.

Will multiple equilibrium invite price manipulation in practice as we have discussed in

Section I.B? Although there has been no issuance of market-triggered CC, such manipulation

problem has been already witnessed in the markets of securities such as barrier options,

which have payoffs when a trigger is reached. During 1994–1995, “knock-in” barrier options

on Venezuelan Brady bonds, which pay when the underlying bonds reach a high enough level

(trigger) experienced manipulation (The Economist (1995)). The fund owning the option

attempted to push the price up by buying the bond, and the investment bank that sold the

option attempted to keep the prices down. During the height of manipulation, about 20%

of the outstanding bonds changed hands, and the prices went up by 10%.12 In the context

of our model, such manipulative behavior may arise due to the possibility of value transfers,

which pits the equity holders against the holders of contingent capital. It may be argued that

the market should be able to anticipate such value transfers ahead of time and incorporate

12When arbitragers create excessive pressure on the issuer’s stock price toward the trigger point, there can
also be a negative effect on price, as the death spiral effects of reverse convertible bonds analyzed by Hillion
and Vermaelen (2004).
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them before the equity price approaches the trigger. This, however, is not possible when

there are multiple equilibria, as there is no credible way to tell which equilibrium will result

in the future.

II The Analysis in Dynamic Continuous-Time Model

II.A The Dynamic Continuous-Time Model

Valuation of contingent capital can be performed using the analytical approach developed

in structural models of default pioneered by Merton (1974) and extended by Black and

Cox (1976) who value default-risky senior and subordinated debt securities. These models

work with the asset value of the issuing firm as the state variable and derive simultaneously

the equity and debt values. The paper by Black and Cox, is particularly relevant as they

explicitly model a safety covenant as a trigger for bondholders to take over the firm. The

contingent claims approach has been standard for pricing corporate debt and hybrid securities

in industry, as presented in detail by Garbade (2001).

We develop the ideas in the context of a structural model of default, along the lines of

Merton (1974) and Black and Cox (1976). We assume that the asset value process, denoted

by At, is observable, but the trigger for the CC is specified in terms of the stock price St.

Consistent with these models, we assume that pricing should exclude arbitrage profits and

thus operate in a risk-neutral probability. Let the assets generate cash flows at the rate of at.

Our analysis allows the bank asset value At to have time-varying drift µt and volatility σt.

The analysis also allows the stochastic process of bank asset value to have jumps13 because

large downward changes in asset value are often associated with financial or economic crisis.

13Duffie and Lando (2001) have developed a framework in which the true At process is continuous, but
stock and bond prices exhibit discontinuities due to imperfect information. To keep our analysis simple, we
work with an asset value process that exhibits jumps and is observed by the agent.
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Following Merton (1976), we assume

dAt = µtAtdt+ σtAtdzt + At(yt − 1)dqt, (5)

where zt is a Wiener process, qt is a Poisson process with expected arrival rate λt, and yt

follows a log-normal distribution with parameters µy and σy. Let rt be the instantaneous

risk-less interest rate at time t. In risk-neutral probability measure, we should have µt =

rt − at − λE[yt − 1].

We assume that the bank has issued a senior bond with a par value B̄ and maturity T .

The coupon rate of the senior bond is bt, which can be constant or time-varying. This allows

both fixed- and floating-rate debt. Let δ be the time when the senior bond defaults. We

model bankruptcy through a default barrier. Generally, the default barrier is set to limit

the loss of the bond holder’s investment. Upon default, bond holders take over the firm and

receive its liquidation value. No value is left to securities that are subordinate to the bond.

There are several ways to specify default condition, which determines the default time. In

general, the time of bankruptcy is

δ = inf{t ≥ 0 : At ≤ Γt} . (6)

where Γt is the default barrier. We define δ = +∞ if At is above the barrier all the time. As

an example, we can let the default barrier at time t be Γe−γ(T−t), where Γ and γ are positive

constants. This is the barrier in Black and Cox (1976). Alternately, we can model default as

the choice of equity holders, who default when the value of their stake in the firm is zero. In

this case, the default time is δ = inf{t ≥ 0 : At ≤ Bt}. The theorems derived in this section

apply to both types of default conditions.

Bankruptcy is costly in practice. To bond holders, the loss after default consists of three

parts: the loss of asset value relative to the par value, the liquidation discount, and legal
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expenses. We refer to the last two parts as bankruptcy cost. For banks and financial insti-

tutions, which may be interconnected, the expected costs of bankruptcy may be significant.

When a bank defaults at time δ, the loss of asset value relative to the par is B̄ − Aδ. Let

ω represent bankruptcy cost as a fraction of the asset value. The sum of the liquidation

discount and legal expenses is ωAδ. The value received by bond holders is (1− ω)Aδ.

The value function of the senior bond can be expressed in terms of the risk-free discount

factor and an event indicator. Given that the instantaneous risk-free interest rate is rt, the

risk-free discount factor from time t to s is P (t, s) = exp (−
∫ s
t rudu). The event indicator

1event equals either 1 or 0, depending on whether or not the event happens. The value of the

bond before default (t < δ) is, in rational expectation,

Bt = Et
[
B̄P (t, T ) · 1δ>T + (1− ω)AδP (t, δ) · 1δ≤T + IBt

]
, (7)

where Et[·] denotes the expectation, conditional on the information up to time t, and IBt is

the discounted value of interest income:

IBt =
∫ min{δ,T}

t
btB̄P (t, s)ds . (8)

Besides senior bond, the bank capital structure consists of n shares of common equity

and a contingent capital in the capital structure of the bank. The par value of contingent

capital is C̄, and it pays coupon at a rate ct until the contingent capital converts to mτ

shares of common equity if conversion happens at time τ . After conversion, the number of

outstanding shares of common equity is n + mτ . Both Kt and mt are given functions of

observable variables at time t, and they are assumed to be finite and positive.

Conversion to common equity is mandatory when the value of equity hits or runs below

a trigger. The trigger condition is specified in terms of the value of common equity relative

to the risk-weighted asset of the firm. The general form of conversion rules is that the
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contingent capital converts to m shares of common equity if the value of equity falls to or

below X percent of risk-weighted asset (RWAt). Let Kt = RWAt×X/100, which is referred

to as the conversion trigger. Conversion happens when stock price hits or runs below Kt/n,

which is referred to as the trigger price.

Theoretically, equity value can be compared to conversion trigger at any time, but prac-

tical CC contract must compare equity value and trigger at specified times such as daily

market close. Let Λ be the set of time points when the equity value is compared to the

trigger and assume T ∈ Λ. The first time when a stock price is found to be equal or lower

than the trigger is

τ = min {t ∈ Λ : nSt ≤ Kt} . (9)

If nSt > Kt for all t ∈ Λ, we define τ = +∞. If condition in (9) is verified continuously, i.e.,

equity value is compared to the trigger at any time, then use Λcontinuous = [0,+∞) for Λ. For

the contingent capital contracts that verify the conversion condition with daily or weekly

closing stock prices, we use Λdaily = {i/252 : i = 0, 1, 2, · · ·}, assuming there are 252 trading

days in a year, or Λweekly = {i/52; i = 0, 1, 2, · · ·}, respectively. The theorem derived in this

section applies to both continuous and discrete verification of the conversion condition.

After contractual coupons on the senior bond and contingent capital are paid, the cash

flow generated from the assets of the bank will be paid to equity holders as dividends.

Therefore, before conversion, the total dividend paid to equity holders during a short period

dt is (atAt − btB̄ − ctC̄)dt. After conversion and before default of the senior bond, the total

dividend paid to equity holders (including those new equity holders after conversion) during

an infinitesimal period dt is (atAt − btB̄)dt.

At any time t before the contingent capital converts (t < τ), the per-share value of
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common equity is, in rational expectation,

St = Et

[
1

n

{
(AT − B̄ − C̄)P (t, T ) · 1min{τ, δ}>T + It

}]
+ Et

[
1

n+mτ

{
(AT − B̄)P (t, T ) · 1τ≤T<δ + JτP (t, τ) · 1τ<min{δ, T}

}]
, (10)

where It is the time-t value of total dividends before conversion, and Jτ is the time-τ value

of the total dividends after conversion:

It =
∫ min{τ, δ, T}

t
(asAs − bsB̄ − cs C̄)P (t, s)ds (11)

Jτ =
∫ min{δ, T}

τ
(asAs − bsB̄)P (τ, s)ds. (12)

The value of the contingent capital before conversion is

Ct = Et
[
C̄P (t, T ) · 1min{τ, δ}>T +Ht

]
+ Et

[
mτ

n+mτ

{
(AT − B̄)P (t, T ) · 1τ≤T<δ + JτP (t, τ) · 1τ<min{δ, T}

}]
, (13)

where Ht is the present value of coupon interests that the CC holders receive before conver-

sion:

Ht =
∫ min{τ, δ, T}

t
csC̄P (t, s)ds . (14)

After the contingent capital converts to mτ shares and before the senior bond matures or

defaults (τ ≤ t < min{δ, T}), the per-share value of common equity becomes

St =
1

n+mτ

Et
[
(AT − B̄)P (t, T ) · 1δ>T + Jt

]
. (15)

II.B The Pricing Restriction

Since the value function Bt defined in equation (7) exists and is continuous in t and At,

we focus on the value function of equity share St and the value of the contingent capital

Ct before conversion. Given conversion trigger Kt and conversion ratio mt, a pair of value
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functions, (St, Ct), that satisfy equations (9), (10), (13) and (15) is called a dynamic rational

expectations equilibrium or, simply, an equilibrium. The equilibrium is unique if each of St

and Ct has a unique value for every realization of At at any time t. In fact, such an equilibrium

does not always exist for arbitrary specification of mt. The next theorem presents the pricing

restriction of a unique equilibrium.

Theorem 1 For any given trigger Kt and conversion ratio mt, a necessary condition for

the existence of a unique equilibrium (St, Ct) is nCt = mtKt for every t ∈ Λ.

This necessary condition is also sufficient in the following sense:

Theorem 2 For any given trigger Kt, there exists a conversion ratio mt and a unique

equilibrium (St, Ct) satisfying nCt = mtKt for every t ∈ Λ.

The pricing restriction of unique equilibrium has important implications to the design of

contingent capital. These theorems say that if conversion is at the trigger price, there should

be no transfer of value from CC holders to equity holders, or vice versa. To see this, we can

rewrite the pricing restriction as mt(Kt/n) = Ct for every t ∈ Λ. If equity value hits right

on the trigger at the conversion time t, we should have St = Kt/n. Then, the value of mt

shares of stock at conversion time is mtSt, which equals Ct. More importantly, the theorems

imply that conversion cannot be punitive to equity holders. At conversion time t, we have

have nSt ≤ Kt. Then, mtSt ≤ mtKt/n = Ct, which means that the value of the converted

shares, mtSt, will never exceed the CC value, Ct. Therefore, in a contingent capital that

entertains a unique equilibrium, conversion may punish the CC holders but never punish the

equity holders.

The pricing restriction becomes nC̄ = mTKT at maturity. If the conversion trigger

and ratio are both constant and denoted by m and K respectively, the restriction becomes
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m = nC̄/K, as seen in section I.A. When this restriction is violated, multiplicity or absence

of equilibrium may occur at maturity, as shown by the examples in the previous section.

We have also seen that the restriction at maturity does not guarantee that it will be met

before maturity. The above two theorems require that the pricing restriction be satisfied at

every possible conversion time. As long as the restriction can be violated at some conversion

time, unique equilibrium is not assured. When the restriction is violated, conversion is either

punitive or rewarding to the equity holders, causing the contingent capital to have either

multiple equilibria or no equilibrium.

The situation of no equilibrium for contingent capital is closely related to Bond, Goldstein

and Prescott (2010). In a two-period model, they show the absence of equilibrium when

regulators choose to intervene based on the observed market prices. Similar to their result,

equilibrium may be absent for a contingent capital when conversion is based on a market

price, although the CC can also have multiple equilibria, which is different from their model.

In a similar two-period model with regulator intervening only once at a fixed time, Birchler

and Facchinetti (2007) note that a unique equilibrium can be preserved, if the haircut of

asset value equals the benefit to asset holders provided by the intervention. This is somewhat

in the same spirit of our Theorem 1—the intervention should have not transfer value to or

from the asset holders.

It is important to point out that even without bankruptcy costs or jumps, multiplicity

or absence of equilibrium may arise when the pricing restriction in Theorems 1 and 2 is

violated. Thus, even in a Modigliani-Miller’s world, violation of the pricing restriction can

lead to multiple or no equilibrium. Since Theorems 1 and 2 still hold if the assets value follows

a geometric Brownian motion, a contingent capital that violates the pricing restriction may

cause stock prices to jump in a capital market even when the underlying asset prices have no

jumps. Consequently, a contingent capital that violates the pricing restriction can disturb the
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continuity of the stochastic process of the stock price. From this point of view, contingent

capital can potentially be a factor of instability, rather than an instrument to maintain

stability.

If the pricing restriction is violated at many potential conversion points, the possible

equilibrium prices may span a wide range on the initial day. We demonstrate this with a

numerical example, in which the asset follows a simple geometric Brownian motion: dAt =

rAt + σAtdzt and a conversion condition is verified using daily closing prices: Λ = Λdaily. In

Table I, the column with the heading “GBM” presents the parameters used in this example
Insert
Table.I
around
here

and the equilibrium values.14 We assume that the bank’s initial asset level is 100. Its

volatility is 4%. To keep things simple, we assume a flat term structure, anchored at 3%.

The par value of the senior bond is 87 percent of the current asset, and its coupon rate is 4%.

We chose the default barrier to be the par value of the bond plus the accrued coupon. There

is a unique equilibrium value for the senior bond, which is 88.03, showing that the 3.34%

coupon rate prices the bond over par. The par value of the CC is 5% of the bank’s current

asset value, and the CC converts to equity if equity value based on the daily closing price

is less than or equal to 1 percent of the initial asset value. To avoid running into the case

where no equilibrium exists, we set the coupon of the CC to zero. The maturities of both

the senior bond and CC are five years. The range of prices generated by multiple equilibria

seems substantial. Multiple equilibria produce equity values ranging from 5.86% to 6.46%

of the initial asset value. They are associated with CC values ranging from 3.86% to 4.46%

of initial asset value. The range of the multiple equilibrium prices is 0.6% of the initial asset

value.

The range of multiple prices depends on the asset volatility, the senior bond, and the

contract parameters of the CC. In Appendix E, we explain our choice of parameters for the

14We calculate the prices with a binomial tree that approximates the diffusion process, following Cox, Ross
and Rubinstein (1979).

23



example in Table I. Recognizing that the parameters are potentially different among banks,

we examine how the range of multiple prices changes as each parameter varies. In Figure 2,
Insert
Fig.2
around
here

panel A shows that the price range is an increasing function of the bank’s asset volatility.

Panel B shows how the range is related to the bank’s leverage with the senior bond. In the

first part the range is wider for a bank that has higher leverage, and in the later part the

range decreases. These panels demonstrate that the bank-specific information such as asset

volatility and leverage play important roles in determining the severity of multiple equilibria.

In Panel C, the range widens as the par value of the CC increases. Therefore, the larger

CC a bank issues, the wider its range of equity prices. Panel D shows how the range is

related to the conversion trigger. The range is wider for a lower trigger than for a higher

trigger, because the time to reach the trigger is longer in expectation, incorporating more

conversion points in generating the multiple equilibria. The last two panels demonstrate

that the severity of multiple equilibria depends on the amount and characteristics of the CC.

With jumps in the asset value, there can still be a wide range of multiple equilibrium

prices. We demonstrate this by letting the asset follow the jump diffusion process in equation

(5) and using conversion time Λdaily. In Table I, the column with the heading “JD” presents

the parameters used in this numerical example. We assume that the arrival rate of jumps

is 4 times per year, reflecting the quarterly regulatory and accounting filings. The mean

of logarithm jump size is −1 percent and its volatility is 3 percent to reflect possible large

losses. With the presence of jumps, we assume that the volatility of the continuous process

is 4%, lower than the volatility assumed for the GBM. To calculate the equilibrium prices,

we follow Hilliad and Schwartz (2005) to build a bi-variate tree that approximates the jump

diffusion process. With jumps, the yield 3.34% prices the bond at par, which is 87% of the

initial asset value. The contingent capital and equity have a bigger range of equilibrium

prices. An equilibrium equity value can be as low as 3.84% or as high as 5.44% of the
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initial asset value, and the CC value ranges from 2.30% to 3.90% of initial asset value. The

pricing range is 1.6% of the initial asset value. Since JD is different from GBM only in the

parameters about jumps, these examples show that jumps enlarge the pricing range of the

multiple equilibria.

It is useful to provide some perspective on why the multiple equilibria arise in the above

example but do not generally arise in the pricing of convertible bonds or options.15 With a

convertible bond, the investor has the “option” to convert and get a pre-specified number

of shares of common stock. In each state, the investor can compare values associated with

different conversion decision and select the maximum. Likewise, the holder of the option

can also make the optimal decision in each state. These optimal decisions can be modeled

by the “smooth pasting” or the “high contact” condition pioneered by Merton (1973) and

further elucidated by Dixit and Pindyck (1994). In such models, the exercise boundary itself

is endogenous and not mandated, and the stake holder, acting in his self interest will select

the conversion decision optimally so that there is no value transfer at the trigger price.

With mandatory conversion, no stake holder is allowed to optimally act at the trigger.

This absence of a “smooth pasting” condition then leads to the problems we have articulated

above. The smoothness breaks down if the mandatory conversion transfers value between

the equity holders and CC holders at the trigger price.16 The state-contingent conversion

ratio presented in the theorems prevents the value transfer and, in effect, keeps the prices

15It should be noted that there are some studies of the multiple equilibrium in convertible bonds and
options. Constantinides (1984) shows the possibility of multiple competitive equilibria, and Spatt and
Sterbenz (1988) have examined sequential exercise strategies and gains to hoarding warrants. In these
papers, however, multiplicity of equilibrium is caused by the distribution of ownership of warrants and
reinvestment policies. Furthermore, in the context of bank runs, the possibility of multiple equilibria has
been identified by Diamond and Dybvig (1983).

16The effect of value transfer at mandatory conversion is similar to an exogenous value transfer caused by
tax distortion. Albul et al (2010) have shown that differential tax treatment of CC’s coupon interest and
equity’s dividend can cause multiple equilibria for a mandatory convertible debt with the trigger on asset
value.
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“smooth” at conversion.17 However, conversions that are mandatory only at maturity do not

pose any essential difficulty as the bond trades at par at maturity and hence the zero value

transfer restriction at maturity can be satisfied with a fixed conversion trigger and ratio.

The mandatory convertible preferred security in the Treasury’s Capital Assistance Program

in 2009 has such features at maturity.18

Several papers have proposed pricing models of CC with unique a equilibrium. Those

models either avoid placing the conversion trigger on the market value of equity or make

additional assumptions so that the equity value is unaffected by the conversion of contingent

capital. Albul et al. (2010) and Himmelberg and Tsyplakov (2012) obtain a unique equilib-

rium by placing the trigger directly on the asset value. Pennacchi (2010) and Pennacchi et

al. (2011) place the conversion trigger on the ratio of the asset value to the combined value

of the CC and equity. In order to have a unique equilibrium, these papers make additional

assumptions so that the ratio is exogenously determined and unaffected by the CC’s conver-

sion.19 McDonald (2010) calculates a unique price for CC by assuming that the firm’s equity

value follows a geometric Brownian motion exogenously. Glasserman and Nouri (2012) place

the conversion trigger on the ratio of “book value” of equity to the asset value, where the

“book value” is obtained by subtracting, from the asset value, the par values and coupon

obligations of the bond and CC. These studies corroborate the importance of placing the

conversion trigger on exogenous variables in order to steer clear off the multiplicity and ab-

sence of equilibrium and to price the contingent capital. However, a trigger placed on an

exogenous variable does not assure timely conversion because the exogenous variable may

not signal a bank’s potential large losses.

17In the valuation of barrier options, the exercise boundary is exogenous and their structure shares some
of the features of CC. But the exercise of such options does not influence the underlying stock price itself,
as there are no dilution effects to consider. These options are also in zero net supply.

18See Glasserman and Wang (2011), who describe and value the capital assistance program.
19In a bank with short-term, but not long-term, debt, they assume that the short-term debt is always

priced at par and the total par value follows an exogenous stochastic process.
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Our focus is on the contingent capital with a mandatory conversion feature and a trigger

for conversion placed on the value of securities issued by the bank. This design does not

leave conversion as an option to the bank’s equity holders, the CC holders, or the regulators,

preventing them to behave optimally to determine the trade off between conversion and

continuation. We have discussed the reasons for taking the conversion option away from

these stake holders. However, it is important to understand when the mandatory conversion

is based on the market price, whether conversion happens or not depends on the aggregate

behavior of the agents in the market. Our model uses the no-arbitrage pricing framework, in

which the agents in the market make optimal investments and take advantage of arbitrage

opportunities.

Although all our numerical examples demonstrate the case of multiple equilibrium, we

should emphasize that the absence of equilibrium is equally important. While the range

of multiple equilibrium offers a sense of the severity of the problem, there is no simple

way to characterize the severity of no equilibrium. This does not imply that the absence

of equilibrium is not a serious concern. The problem with the absence of equilibrium is

demonstrated in the laboratory experiments conducted by Davis, Prescott and Korenok

(2011). They let groups of heterogeneous agents trade an asset in a market where there is

no equilibrium due to intervention by a market regulator and compare the results obtained

in a market where there is a unique equilibrium without intervention. They observe large

uncertainty in trading prices and inefficient allocation of the asset, with efficiency in their

analysis measured by how much assets are allocated to the traders who value them the most.

In the case of the multiple equilibria caused by regulator intervention, their experiments also

show price uncertainty and allocation inefficiency.
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III Equilibria under Alternative Market Conditions

III.A Implementation in a Restrictive Market Condition

The pricing restriction presents a challenge to the implementation of the CC design: the

restricted conversion ratio is tied to the market value of the contingent capital if we want a

unique equilibrium. Since we cannot tell what the future market value will be, the value Ct

of the nonconverted CC can be different from a pre-specified mtKt/n at any time t ∈ Λ. If

we set the conversion ratio to mt = nCt/Kt, it depends on the future market value of the

nonconverted CC. However, if the unconverted CC is always priced at the par value, the

problem will be solved by setting mt = nC̄/Kt.

To make a CC priced at par all the time before conversion, we need to focus on a structure

that makes the market value of the CC immune to changes in interest rates and default risk.

For example, if the CC had no default risk until conversion, by selecting the coupon rate at

each instance to be the instantaneously risk-free rate we can ensure that the CC will trade at

par. See Cox, Ingersoll, and Ross (1980) for a proof of this assertion.20 In this case, CC will

work well, because we can determine the conversion ratio ex-ante as mt = nCt/Kt = nC̄/Kt.

Since C̄ and Kt are known ahead of time, we can specify the conversion ratio ahead as well.

Without jumps in asset value, CC can be designed to be default-free during its life before

conversion, even though the bank may have a positive probability of default on its debt

claims subsequent to the expiration of CC. This idea is formalized in Theorem 3 below.

Theorem 3 Suppose a bank’s asset value follows a geometric Brownian motion, dAt =

(rt−αt)Atdt+σAtdzt, where αt is the rate of cash flow from the asset, rt is the instantaneous

risk-free interest rate, and zt is a Wiener process. Given any conversion trigger Kt that is

a continuous function in time, the contingent capital with coupon rate ct = rt, continuous

20In the context of a CC that is exposed to default risk, the appropriate indexed coupon may also require
a compensation for the mandatory conversion in addition to the risk-free rate.
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verification Λ = [0,+∞], and conversion ratio mt = nC̄/Kt has a unique equilibrium value,

which equals the par value.

This theorem generalizes the immunization results of Cox, Ingersoll, and Ross (1980) to

a setting where there is mandatory conversion and a positive probability of default after the

expiration date of CC. Since the coupons float with the risk-free rate and the principal is

guaranteed at conversion, the CC is fully immunized and therefore sells at par. The economic

rationale is also intuitive. Since the CC sells at par, we can design the CC with an ex-ante

conversion ratio that guarantees that, upon conversion, the CC holders will get par. This

theorem demonstrates the existence of simple CC design that gives a unique equilibrium. In

this CC, conversion trigger K and ratio m can be constant. To assure a unique equilibrium,

we only need to set K and m so that m = nC̄/K.

Theorem 3 appears to make a CC with market trigger implementable, but it is imprac-

ticable. Theorem 3 needs the asset price process to be continuous and the verification to

be continuous. In reality, the underlying process of an asset value can have discontinuous

jumps. Consequently, the bond is not free of default risk before conversion, and the theorem

does not hold. Also, continuous verification is impractical; practical contract specifications

are always based on closing or settlement prices, sampled over daily or other regular inter-

vals. In addition, bank-issued CC will be less liquid than risk-free assets such as Treasury

securities, and hence the coupon will have to include a component for the liquidity premium

in order to make the CC value equal to par. Theorem 3 indicates the restrictive assumptions

that are needed to design a CC with market trigger that produces a unique equilibrium.

III.B Equity Issuance and Conversion

In the analysis so far, we assume that the bank does not issue new equity shares during

the life of the contingent capital, particularly when the bank’s equity level is low. It is a
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reasonable assumption because the reason for regulators to require contingent capital stems

from their belief that it is too expensive or difficult for a bank to raise equity capital when the

bank is under stress and highly leveraged. However, it is still interesting to ask whether the

absence of a unique equilibrium may occur if banks can issue new shares to avoid conversion.

Attempting to solve the equilibrium problem demonstrated this paper, Calomiris and

Herring (2011) argue that the option to issue new shares and avoid conversion eliminate the

equilibriums that are disadvantageous to equity holders and assures a unique equilibrium.

They also assert that the need to avoid a disadvantageous equilibrium forces banks to issue

common equity. They suggest that regulators should require banks to hold contingent capital

mainly to force banks to issue equity in bad times or states. They recommend that CC with

a market trigger and a punitive conversion ratio gives incentives to equity holders and bank

managers to issue new equity to avoid conversion.21 Based a one-period numerical example,

they suggest that issuance of new equity can remove the conversion equilibrium at the trigger

point. Unfortunately, their suggestion is correct only if the bank is unlevered as assumed in

their example.22

In this subsection, we will show that equity issuance may eliminate some of the equilib-

rium in which the CC converts and ensure unique equilibrium at maturity but not before

maturity. This result at maturity is of limited interest as the bank becomes unleveraged at

maturity. In demonstrating this, we assume a frictionless world where issuing new shares

does not incur additional cost beyond the shares’ fair value. Finally, we show that the ad-

ditional cost of issuing new shares will make multiplicity of equilibrium even more likely.

21Himmelberg and Tsyplakov (2012) also advocate avoiding conversion by issuing new equity but place
the trigger on bank asset instead of equity.

22Another problem in this proposal is that we cannot impose a limit on new share issuance. Unlimited
share issuance may cause a death spiral in equity prices, which is a serious concern in industry (see Hillion
and Vermaelen, 2004, for an analysis of death spiral associated with floating price convertibles.) In fact, a
cap on new share issuance is one of Basel’s minimum requirements for contingent capital contracts (Basel
Committee on Banking Supervision, 2011).
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Therefore, the proposal by Calomiris and Herring (2011) is not a solution to the equilibrium

problem discovered in our paper.

We first show how equity issuance eliminates a conversion equilibrium at the maturity of

the senior bond. Let us use the same notations in Section I. To have multiple equilibria at

maturity, we need to set m > nC̄/K so that conversion is punitive. As we have discussed

before, for every AT ∈ (B̄ + C̄ + K, B̄ + (m/n)K + K], there are two equilibria. In one

equilibrium the CC does not convert, and the stock price is SuT = (AT −B̄− C̄)/n > K/n. In

the other equilibrium the CC converts, and the stock price is ScT = (AT−B̄)/(n+m) ≤ K/n.

If the bank issues enough (say l) new shares to avoid conversion, the second equilibrium

cannot sustain. Since conversion can be avoided, the share price with new issuance must

be SuT . Since ScT < SuT , the bank will choose to issue new shares as otherwise everyone may

believe conversion could happen. Consequently, the only possible equilibrium stock price is

SuT for every AT ∈ (B̄ + C̄ +K, B̄ + (m/n)K +K].23

Equity issuance ensures a unique equilibrium in the above example because the bank is

not leveraged after stock issuance. If the firm continues to be leveraged at time T , issuing

new shares of equity will increase the safety of the outstanding bond and CC and raise their

values. This transfers some value from equity holders to bond holders. Suppose, at time T ,

the bond value without issuing equity turns out to be equal to B and the bond gains ∆B > 0

with the issuance of l shares of new equity. Then, the bond value with equity issuance at T

is Bi
T = B + ∆B. The equity price with the issuance of new equity, denoted by SiT , should

satisfy (AT + l · SiT −Bi
T − C̄)/(n+ l) = SiT . Solving for SiT , we obtain that the stock price

should be SiT = (AT −BT − C̄)/n = (AT −B −∆B − C̄)/n, which is smaller than SuT .

23It is worth pointing out that no matter how large the conversion ratio m is, equity issuance does not
eliminate the chance of conversion. Conversion must happen when AT ≤ B̄ + C̄ + K because Su

T ≤ K/n
in this case. Issuing new shares will not increase Su

T . Therefore, the probability of conversion is at least as
large as P{B̄ + C̄ +K}, which is independent of m.
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Then, for every AT ∈ (B+C̄+K, B+(m/n)K+K], there are two equilibria. In the first

equilibrium, all investors believe that CC will not convert. In this case, bank management

does not issue new shares because new issuance will lead to lower stock price. Without

conversion and issuance, the stock price is SuT . In the second equilibrium, all investors

believe that the CC converts if no new shares are issued to avoid the conversion. In this

case, the result of the equilibrium depends on the magnitude of ∆B. If ∆B is so small that

SiT > ScT , then the bank management prefers issuing new shares to conversion. Consequently,

CC does not convert, new shares are issued, and the stock price is SiT , which is larger than

ScT but smaller than SuT . However, if ∆B ≥ n(AT −B)/(n+m)− C̄, it is easy to verify that

SiT ≤ ScT . In this case, the bank management will be better off by letting the CC convert.

Therefore, the converted share price ScT should be the equilibrium price, and no new shares

are issued.

The above analysis suggests that equity issuance does not ensure a unique equilibrium

in a dynamic setting. Take the example of one-period discrete model in Section I.B but set

conversion ratio to m = 3. Recall that B̄ = 90, C̄ = 10, K = 5, and n = 1. The probability

distribution of AT is: p{AT = 120} = .25, p{AT = 100} = 0.50, and p{AT = 80} = 0.25.

With the assumption of zero risk-free rate, the initial asset value is A0 = 100, and bond value

is B0 = 87.50, as shown in panel A of Figure 3. Similarly as in Section I.B, without issuance
Insert
Fig.3
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of new shares, we obtain two equilibria: (Cu
0 , S

u
0 ) = (6.25, 6.25) and (Cc

0, S
c
0) = (9.38, 3.13),

as shown in panel B of Figure 3.

Now, assume that the bank plans to issue new shares today so that the total number of

shares enlarges by fifty percent. Suppose the issuance price is $5.26, which will be shown

in the next paragraph to be the equilibrium stock price with the issuance. For simplicity,

assume that the proceeds of the new shares can be reinvested to enlarge the bank asset

32



and earn the same return.24 The asset value with reinvestment of the proceeds is Ai0 =

100 + 0.5× 5.26 = 102.63. If the original asset value AT is 120, 100, or 80, the value of the

enlarged asset, AiT , is 123.16, 102.63, or 82.10, respectively. These asset values are shown in

panel A of Figure 3. The enlarged asset makes the bond safer and increases the bond value

from 87.50 to 88.03, as shown in the same panel.

With new equity issuance being allowed, no conversion today is still an equilibrium as

shown in panel B of Figure 3 because the stock price, Su0 = 6.25, is above the trigger.

However, if all investors believe that conversion would happen if the bank does not avoid it,

issuing new shares today is another equilibrium as shown in panel C of Figure 3. Issuing new

shares is a strategy that dominates conversion because Si0 = 5.26 is higher than Sc0 = 3.13.

Also notice that Si0 = 5.26 is the same as the issuance price we assumed at the beginning of

the previous paragraph. This confirms that Si0 = 5.26 is an equilibrium price with issuance.

Therefore, using equity issuance to avoid conversion, we still have two equilibria: (Cu
0 , S

u
0 ) =

(6.25, 6.25) and (Ci
0, S

i
0) = (6.71, 5.26).

It is difficult to analyze a dynamic continuous time model with optimal equity issuance,

but the above analysis and example in discrete models are sufficient to demonstrate that

optimal equity issuance does not guarantee a unique equilibrium, even if we assume equity

issuance is possible and costless. Given the complicated pricing dynamics of contingent cap-

ital, the incentives of contingent capital to bank managers are largely uncertain. Therefore,

using a contingent capital requirement appears to be an indirect way to force banks to issue

common equity. It may be more direct and simple to set a regulatory policy that requires

banks to issue common equity when the market equity ratio is low.

24That is, we assume that the bank asset has constant returns to scale. If we assume that the asset has a
decreasing return to scale, it strengthens the case for multiple equilibria.
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III.C Financial Distress

When deriving the condition for the existence of a unique equilibrium, we allow for costly

bankruptcy but not for financial distress. For the one-period and two-period examples in

Section I, we consider zero-coupon bond and contingent capital so that the firm does not

need cash or other liquid assets to meet coupon obligations before the maturity date. For

the theorems in Section II, we assume that the cash outflows for paying coupons of the

bonds and contingent capital come from operating cash flows and, when needed, from equity

holders. This assumption ensures that the firm value and senior bond value are not path-

dependent and thus allows us to derive the necessary and sufficient conditions for the unique

equilibrium in a general setting.

An argument frequently cited in favor of contingent capital is, however, that it can be

converted into equity if the bank is under financial distress. The conversion thereby conserves

capital as the bank is relieved of paying the coupons associated with the CC. In periods of

financial distress when banks may not be able to raise capital, contractual coupon obligations

may be a burden and carry significant costs. In particular, meeting such obligations may

result in asset depletion, which may further exacerbate the financial distress. One reason

for introducing contingent capital is to reduce the likelihood for a financial institution to

experience default because the chance of costly bankruptcy destroys the value of the firm

that is under financial distress.

Given that financial distress is assumed away in Section II, it is natural to ask whether

there are multiple equilibria under financial stress if the contingent capital has a constant

conversion ratio. This question is technically difficult to analyze in a setting that is as

general as in Section II because selling asset to meet coupon payments makes the asset value

dependent on its path in the past. Nevertheless, using a two-period discrete model, we are
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able to demonstrate that under financial distress when debt service depletes assets, there

can still be multiple equilibria of CC and equity values. In the case of financial distress,

there can even be multiple equilibria of firm values and senior bond values. In other words,

contingent capital can lead the equity, bond and firm values to be all different in different

equilibria.

More generally, the analysis in this two-period model suggests that with financial distress

a contingent capital does not always have unique equilibrium even if we place the conversion

trigger on any combination of the claims of the firm. For example, Pennacchi (2011) suggests

that placing the trigger on the sum of the equity and CC values may ensure a unique

equilibrium. This section shows that his trigger design does not solve the problem in the

presence of bankruptcy costs and financial distress, which are assumed away in his paper.

Our two-period model has three dates: dates 0, 1 and 2. For simplicity, we assume that

the risk-free rate is zero. During each period, the risky asset value either has positive return

R or a negative return −R with equal probability. Thus, on date 1, the asset value will be

A1 = A0(1 ± R) with equal probability for each value. On date 2, however, the asset value

will depend on what happens to the bond and CC on dates 0 and 1. Assume there is a bond

with face value B̄ and coupon rate b per period and a CC with face value C̄ and coupon

rate c per period. Both the bond and CC start from date 0 and mature on date 2. Unlike

in the previous section, we assume that the bank has to sell assets to serve debt obligations.

Then, if neither the bond defaults nor the CC converts on date 0 or 1, the asset value on

date 2 is A2 = (A1− bB̄− cC̄)(1±R), which has four possible values with equal probability.

If the bond does not default on date 0 or 1 but the CC converts on date 0 or 1 when the

asset value is A1, the asset value on date 2 is A2 = (A1− bB̄)(1±R), which has two possible

values with equal probability conditioning on A1.

The firm and bond values also depend on whether the bond is defaulted. If the bond is
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not defaulted up to date i, the firm and bond values on date i are

Fi =

{
A2 if i = 2
E[Fi+1] if i = 0, 1

and Bi =


(1 + b)B̄ if i = 2
E[Bi+1] + bB̄ if i = 1
E[Bi+1] if i = 0,

(16)

where E[Fi+1] and E[Bi+1] are the expected firm and bond values on date i+1, respectively.

Notice that the bond value is “cum-dividend.” In this model, we assume that default happens

if and only if the equity value is zero. Thus, the condition for default on date i is that the firm

value Fi is smaller than or equal to the bond value conditioning on the bond not defaulting.

This default strategy maximizes the shareholders value. Bankruptcy is costly, and the cost

is a fraction (ω) of the assets. Then, if the bond has defaulted by date i, the firm and bond

values on date i are

Fi = Bi = (1− ω)Ai. (17)

The CC and equity values depend on whether the CC is converted, besides depending on

the status of the bond. Let K be the trigger level for contingent capital and m the conversion

ratio. Assume there is one share outstanding on date 0. If the CC has not been converted

on date i, the CC and equity values on date i are

Ci =


(1 + c)C̄ if i = 2
E[Ci+1] + cC̄ if i = 1
E[Ci+1] if i = 0

and Si = Fi −Bi − Ci. (18)

If the CC has been converted on date i but the bond has not been defaulted, the CC and

equity values on the date are

Ci = mSi and Si =
1

1 +m
(Fi −Bi). (19)

If the bond has been defaulted on date i, the CC and equity value on date i are

Ci = 0 and Si = 0. (20)

The set of the firm, bond, CC, and equity values, {(Fi, Bi, Ci, Si)}i=0,1,2, is a dynamic

rational expectations equilibrium in the model if the values satisfy equations (16)–(20). The
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equilibrium in this model is not always unique. This can be shown by a numerical example.

Let A0 = 100, R = 0.06, ω = 0.1, B̄ = 85, b = 0.02, C̄ = 6, c = 0.04 and K = 1. We

have two equilibria, which are displayed in Figure 4. Panel A is an equilibrium in which
Insert
Fig.4
around
here

conversion does not occur, and the bank has to pay coupons to CC holders on date 1. This

reduces the assets and as a consequence increases the likelihood of default on date 2. Panel

B is an equilibrium in which conversion occurs on date 1, and hence the bank is able to

conserve its capital and avoids bankruptcy on date 2.

The following are worth noting. First, the trees in Figure 4 are not recombining as the

assets are reduced to meet contractual coupon payments under financial distress. Studies of

a multi-period model with non-recombining trees are often difficult, and this is the reason

we limit ourselves to a two-period model. Second, the asset value at each node is potentially

different from the bank’s firm value since the latter will be the asset value minus the expected

costs of default, which are the financial distress costs.

Of the two equilibria, the conversion equilibrium in panel B is welfare improving in the

sense that it results in lower dead-weight losses. Notice that the date 0 firm value (100) in

the equilibrium with conversion is higher than the value (97.84) in the equilibrium without

conversion. This shows that the conversion equilibrium results in lesser dead-weight losses

as the bank avoids paying coupons when “bad states” are reached. On the other hand, the

no-conversion equilibrium results in higher dead-weight losses. This example suggests that

contingent capital can be potentially welfare improving in the sense of reducing the expected

dead-weight losses, but there is no credible way to select this equilibrium ex-ante. In fact,

equity holders would prefer the no-conversion equilibrium because the equity value in this

equilibrium is 6.00, which is larger than the equity value (5.36) in the other equilibrium.

37



IV Conclusion

Our paper shows that depending on the design and the underlying asset dynamics, one

can obtain unique, multiple, or no equilibrium when a bank’s capital structure contains a

contingent capital with a market trigger for mandatory conversion. Since contingent capital

and other securities are claims on the same assets, their prices (which reflect conversion

policies) often need to be determined simultaneously. Because no stake holder is given the

option to act in his best interest, conversion rules must ensure that, at the trigger price,

conversion does not change the value of the security on which the trigger is placed. Since

the conversion ratio that gives a unique equilibrium must produce no value transfer, the

design of “dilutive” ratios in order to penalize bank managers or to promote coercive equity

issuance will lead to multiple equilibria. In multiple equilibria, the CC holders and equity

holders have precisely the opposite motives, which can lead to potential manipulation of

market prices when the equity price approaches the trigger level. Under some conditions,

we show that CC with a market equity trigger can also result in no equilibrium, which does

not promote stability.

The pricing problem demonstrated in this paper shows the challenge regulators typically

face when they interact with markets. The challenge can come in two ways: (1) regulation

with a good intention may interfere with the markets and cause instability with unintended

consequences; and (2) regulation’s function may be constrained by the markets, causing

it to become ineffective. In the example of contingent capital with a market trigger, a

conversion that is punitive to equity holders may introduce instability because it creates

multiple equilibria. On the other hand, the unique equilibrium restriction strips off the

incentive function of the CC. In view of the problems that we have discussed earlier regarding

designing CC with bank manager’s option to convert, or with a trigger placed an accounting
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ratios, or with regulator’s discretion, and the challenges that we have shown regarding the

design of a CC with a market trigger it may not be practical to design the security so that

it converts to common equity in a timely and reliable manner when a bank is under stress.

The equilibrium problem demonstrated by our theoretical analysis, the instability and

uncertainty shown by the lab experiments, and the experience of manipulation in barrier

options suggest that the contingent capital with a market trigger can potentially be prob-

lematic if used widely as a regulatory tool. Regulators should exercise caution in allowing

banks to use the contingent capital with a market trigger, instead of common equity, in

satisfying regulatory capital requirement. Some have argued that contingent capital is a

cheaper substitute for equity because the CC’s coupon payments qualify for tax deduction.

We should point out that the contingent capital with a market trigger is unlikely to be tax

deductible in the U.S. unless the government changes its tax code to exempt CC particu-

larly.25 We should also keep in mind that bank’s savings from tax deduction are taxpayers’

costs. The foregoing observations suggest that the role of CC with a market trigger as a

capital instrument to internalize large losses of systemically important financial institutions

must be examined carefully. The design of an effective and efficient bank capital regulation

is still a continuing and challenging work in progress.

IV.A The Current State of the Regulations Regarding CC

Regulators around the world have taken positions on the credibility and practicality of con-

tingent capital as a loss-absorbing capital for banks and financial institutions. We summarize

25According to Revenue Ruling 85-119, the feature of paying back the par value at maturity, if a CC is
not converted, appears to make the CC a debt for tax purpose. However, the coupon payments are not
tax deductible according to Section 163(l) of the Internal Revenue Codes. A security is a disqualified debt
instrument in IRC Sec. 163(l) if (a) a substantial amount of the principal and interest of the security is
required to be paid in or converted into the equity of the issuer, (b) a substantial amount of the principal or
interest is required to be determined by reference to the value of such equity, or (c) the indebtedness is part
of an arrangement which is reasonably expected to result in a transaction described in (a) or (b).
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below the recent development of policies related to contingent capital. This provides a con-

text for our study and helps us to put a perspective on the policy debate.

Basel III has concluded that contingent capital should not be used by global systemically

important banks (G-SIB) for loss-absorbency, on the ground that absorbing losses at the

point of non-viability violates the spirit of the “going-concern” objectives. The Basel com-

mittee noted several similarities between equity capital and CC (such as the possibility that

both can be issued in good states so that they can offer protection in bad states, and both

are pre-funded, which increases the liquidity of the banks in good states). After enumerat-

ing the pros and cons of CC, the Basel committee concluded that the G-SIB be required to

meet the loss absorbency requirement with common equity capital only. Their recommenda-

tions exclude CC from the core 7% capital requirements and the 0∼2.5% additional capital

requirement for G-SIB.

Although Basel III delegates to regional regulators the decision on the use of CC in any

additional capital requirements, it has issued guidelines on the design of CC. The guidelines

contain three important requirements. First, conversion should be triggered at an equity

ratio not lower than 7% to qualify for “additional tier-1” capital. Second, a regulatory

trigger that forces conversion when the bank is non-viable without public assistance should

be included. Third, a cap on share issuance should be imposed. The first requirement

forces banks to use accounting trigger on equity. The second requirement reveals the Basel

Committee’s lack of confidence in the accounting trigger. The third requirement is a result

of concerns about death spiral.

Regional regulators around the world have issued rules that are consistent with Basel

III and echo the concerns expressed by the Basel committee. The Swiss regulator (FINMA,

2011) requires its large banks to maintain at least 19% capital ratio, comprised of 10% eq-

uity and 9% CC. The European Commission (2011) proposed to mandate that their banks
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maintain capital ratios above 8%, of which 4.5% should be in equity and 3.5% in CC, along

with surcharges of 7.5%, which may only be in common equity. The U.K.’s Independent

Commission on Banking (2011) concluded that equity is the only form of loss-absorbing ca-

pacity that works both pre- and post-resolution and expressed concerns about the potentially

destabilizing effects of contingent capital. Bank of Canada (2010) and the OFSI (Dickson,

2010) extend support for a convertible security structured for the resolution of failing banks

but does not endorse the contingent capital with early conversion features for going con-

cerns. China Banking Regulatory Commission (2011) took a simple approach, requiring

systemically important banks to have at least 11.5% equity or other liquid capital.

The U.S. bank regulators jointly proposed rules on implementing Basel III’s capital re-

quirements. On the second anniversary of the Dodd-Frank Act, the Financial Stability

Oversight Council (2012) submitted its study to the Congress and recommended “that con-

tingent capital instruments remain an area for continued private sector innovation,” after

discussing “a range of potential issues that could be associated with contingent capital instru-

ments, depending on their structure and, in particular, the structure and timing of conversion

triggers.” Particularly, the Council warned that “market-based triggers can exacerbate the

problem of death spiral.”

Appendix Proofs of the Theorems

Before proving the theorems, it is useful to make the following observation. If there were no

CC, at any time t before maturity and default (t ≤ min{δ, T}), the equity value would have

been

Ut = Et
[
(AT − B̄)P (t, T ) · 1δ>T + Jt

]
, (A1)
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where Jt is defined in equation (12) by replacing τ with t. Since it is known from Merton

(1974) and Black and Cox (1976) that Ut is a measurable function of t and At, we can define

another hitting time based on Ut and the given Kt and mt:

υ = inf
{
t ∈ Λ :

n

n+mt

Ut ≤ Kt

}
. (A2)

The following lemma will be useful for all the proofs.

Lemma 1 If (St, Ct) is the stock and CC prices in an equilibrium, then nSt +Ct = Ut when

t < min{τ, δ}, and St = Ut/(n+mτ ) when τ ≤ t < δ.

A Proof of Lemma 1

Suppose t < min{τ, δ}. It follows from equations (10) and (13) that

nSt + Ct = Et
[
(AT − B̄)P (t, T ) · 1min{τ,δ}>T + It +Ht

]
+ Et

[
(AT − B̄)P (t, T ) · 1τ≤T<δ + JτP (t, τ) · 1τ<min{δ,T}

]
. (A3)

Substituting equations (11), (12) and (14) for It, Jτ and Ht, respectively, in equation (A3),

we obtain

nSt + Ct = Et
[
(AT − B̄)P (t, T ) · 1min{τ,δ}>T

]
+ Et

[∫ min{τ,δ,T}

t
(asAs − bsB̄ − cs C̄)P (t, s)ds

]

+ Et

[∫ min{τ,δ,T}

t
csC̄P (t, s)ds

]
+ Et

[
(AT − B̄)P (t, T ) · 1τ≤T<δ

]
+ Et

[∫ min{δ, T}

τ
(asAs − bsB̄)P (τ, s)dsP (t, τ) · 1τ<min{δ,T}

]
. (A4)

Combining the terms in equation (A4), we obtain

nSt + Ct = Et
[
(AT − B̄)P (t, T ) · 1δ>T

]
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+ Et

[∫ min{τ,δ,T}

t
(asAs − bsB̄)P (t, s)ds

]

+ Et

[∫ min{δ, T}

τ
(asAs − bsB̄)P (t, s)ds · 1τ<min{δ,T}

]
. (A5)

In equation (A5), we can rewrite the integral in the second term into

∫ min{δ,T}

t
(asAs − bsB̄)P (t, s)ds · 1τ≥min{δ,T} +

∫ τ

t
(asAs − bsB̄)P (t, s)ds · 1τ<min{δ,T}. (A6)

Combining the integrals of the last terms in equations (A5) and (A6), we obtain

nSt + Ct = Et
[
(AT − B̄)P (t, T ) · 1δ>T

]
+ Et

[∫ min{δ,T}

t
(asAs − bsB̄)P (t, s)ds · 1τ≥min{δ,T}

]

+ Et

[∫ min{δ,T}

t
(asAs − bsB̄)P (t, s)ds · 1τ<min{δ,T}

]
. (A7)

The last two terms in equation (A7) can be combined to give

nSt + Ct = Et

[
(AT − B̄)P (t, T ) · 1δ>T +

∫ min{δ,T}

t
(asAs − bsB̄)P (t, s)ds

]
= Et

[
(AT − B̄)P (t, T ) · 1δ>T + Jt

]
= Ut .

This proves nSt + Ct = Ut.

For τ ≤ t < δ, equations (15) and (A1) imply St = Ut/(n+mτ ). Q.E.D.

B Proof of Theorem 1

For τ < min{δ, T}, it follows from Lemma 1 that Sτ = Uτ/(n + mτ ). Since nSτ ≤ Kτ by

equation (9), we have nUτ/(n+mτ ) ≤ Kτ , which implies

υ ≤ τ (A8)

in view of equation (A2). On the other hand, equation (A2) implies nUυ/(n + mυ) ≤ Kυ,

and thus conversion is an equilibrium at time υ. If nSυ > Kυ, then no conversion is also
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an equilibrium at time υ, contradicting to the assumption of unique equilibrium. Thus, the

uniqueness of the equilibrium implies nSυ ≤ Kυ. It follows that

τ ≤ υ , (A9)

in view of equation (9). Combining equations (A8) and (A9), we have τ = υ. It then follows

from equations (9), (A2) and Lemma 1 that

inf{t ∈ Λ : Ut ≤ Kt + Ct} = inf{t ∈ Λ : Ut ≤ Kt(n+mt)/n} . (A10)

The above equation holds for all possible paths of Ut if and only if Kt +Ct = Kt(n+mt)/n

for all t ∈ Λ, which implies mt = nCt/Kt for all t ∈ Λ. Therefore, in order to have a unique

equilibrium, the conversion ratio must satisfy mt = nCt/Kt for t ∈ Λ. Q.E.D.

C Proof of Theorem 2

To prove Theorem 2, we use the hitting time υ defined in (A2) as the conversion time of a

CC. For any conversion ratio mt, in rational expectations, the stock price and the CC value

before conversion, default, and maturity (t < min{υ, δ, T}) are

S∗t = Et
[
(AT − B̄ − C̄)P (t, T ) · 1min{υ, δ}>T + I∗t

]
+ Et

[
1

n+mυ

{
(AT − B̄)P (t, T ) · 1υ≤T<δ + J∗υP (t, υ) · 1υ<min{δ, T}

}]
, (A11)

C∗t = Et
[
C̄P (t, T ) · 1min{υ, δ}>T +H∗t

]
+ Et

[
mυ

n+mυ

{
(AT − B̄)P (t, T )1υ≤T<δ + J∗υP (t, υ) · 1υ<min{δ, T}

}]
, (A12)

H∗t =
∫ min{υ, δ, T}

t
csC̄P (t, s)ds (A13)

I∗t =
∫ min{υ, δ, T}

t
(asAs − bsB̄ − cs C̄)P (t, s)ds (A14)

J∗υ =
∫ min{δ,T}

υ
(asAs − bsB̄)P (υ, s)ds. (A15)

The stock price after conversion (υ ≤ t < min{δ, T}) is

S∗t =
1

n+mυ

Et
[
(AT − B̄)P (t, T ) · 1δ>T + J∗t

]
. (A16)
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Following the proof of Lemma 1, we can use equations (A11)–(A16) to derive similarly

nS∗t + C∗t = Ut, which implies

nS∗t = Ut − C∗t . (A17)

Now, we use S∗t to define another hitting time: τ ∗ = inf{t ∈ Λ : nS∗t ≤ Kt}. In view

of equation (A17), we have τ ∗ = inf{t ∈ Λ : Ut ≤ Kt + C∗t }. Setting mt = nC∗t /Kt for all

t ∈ Λ, we have

τ ∗ = inf{t ∈ Λ : Ut ≤ Kt + C∗t }

= inf{t ∈ Λ : Ut ≤ Kt(n+mt)/n} = υ . (A18)

Therefore, (S∗t , C
∗
t ) satisfies equations (9), (10), (13) and (15) and thus is an equilibrium.

If (St, Ct) is another equilibrium with the conversion ratio mt = nCt/Kt, following similar

reasoning in the derivation of equation (A18), we can show that the conversion time τ =

inf{t ∈ Λ : nSt ≤ Kt} equals υ, which gives τ = τ ∗. Therefore, the values of the common

stock and CC calculated in equations (10), (13), (A11) and (A12) imply St = S∗t and Ct = C∗t .

This proves the uniqueness of the equilibrium. Q.E.D.

D Proof of Theorem 3

In this theorem, ct = rt for all t. With the conversion ratio mt = nC̄/Kt, we first show

that, in any equilibrium, the value of unconverted contingent capital equals its par value,

i.e., Ct = C̄ for all t ≤ τ .

Let (Ct, St) be an equilibrium. The value of the unconverted contingent capital satisfies

equation (13). Using ct = rt and the definition of the discount factor, we can write equation

(14) as

Ht =
∫ min{τ, δ, T}

t
rsC̄e

−
∫ s

t
rududs = −C̄

∫ min{τ, δ, T}

t
e−
∫ s

t
rudu d

(
−
∫ s

t
rudu

)
. (A19)
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It follows from the fundamental law of calculus that

Ht = −C̄ e−
∫ s

t
rudu

∣∣∣∣min{τ, δ, T}

t
= C̄ [1− P (t, min{τ, δ, T})] . (A20)

The last term can be split into two terms to give

Ht = C̄
[
1− P (t, T ) · 1min{τ,δ}>T − P (t, min{τ, δ}) · 1min{τ,δ}≤T

]
. (A21)

Substituting the above expression for Ht back into the valuation function of Ct in equation

(13) and using the properties of iterated expectations, P (t, T ) = P (t, τ)P (τ, T ) and 1τ≤T<δ =

1T<δ1τ≤min{δ, T}, we obtain

Ct = C̄ − Et
[
C̄P (t,min{τ, δ}) · 1min{τ, δ}≤T

]
+ Et

[
mτ

n+mτ

{
(AT − B̄)P (τ, T ) · 1T<δ + Jτ

}
P (t, τ) · 1τ≤min{δ,T}

]
, (A22)

Since equation (15) implies

1

n+mτ

Eτ
[
(AT − B̄)P (τ, T ) · 1T<δ + Jτ

]
= Sτ , (A23)

the value of contingent capital with the floating coupon rate rt equals

Ct = C̄ − Et
[
C̄P (t,min{τ, δ}) · 1min{τ, δ}≤T

]
+ Et

[
mτSτP (t, τ) · 1τ≤min{δ, T}

]
. (A24)

Since the asset follows a continuous process and the verification is continuous, default cannot

occur before conversion, i.e., τ ≤ δ. Hence, the above equation can be written as

Ct = C̄ − Et
[
C̄P (t, τ) · 1τ≤min{δ, T}

]
+ Et

[
mτSτP (t, τ) · 1τ≤min{δ, T}

]
. (A25)

The continuous process and verification also imply nSτ = Kτ at the conversion time τ .

Substituting Sτ = Kτ/n and mτ = nC̄/Kτ , we obtain

Ct = C̄ − Et
[
C̄P (t, τ) · 1τ≤min{δ, T}

]
+ Et

[
nC̄

Kτ

Kτ

n
P (t, τ) · 1τ≤min{δ, T}

]
= C̄, (A26)
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which shows that the CC is priced at par.

Since the contingent capital is always priced at par, the equilibrium price of CC is unique.

Then, Lemma 1 implies St = (Ut − C̄)/n before conversion and St = Ut/(n + mτ ) after

conversion. Consequently, the equilibrium price of the common stock is also unique. Q.E.D.

E The Parameters for the Examples in Table I

The parameters chosen in the example are broadly consistently consistent with the charac-

teristics of large banks. The par value of bond is chosen to be 87 because it is consistent

with the average leverage ratio (6.8) of the 50 largest U.S. bank holding companies during

2008–2011, based on FR Y-9C filings. A leverage ratio of 6.8, which is the ratio of debt to

equity, implies that the debt-to-asset ratio is 6.8/(6.8 + 1) = 0.87.

Estimation of bankruptcy costs is difficult, and academic literature on the estimation

is rare. A well-known reference is the study of Altman (1984), which examines a sample

of 19 industrial firms which went bankrupt over the period of 1970-1978 and estimates the

bankruptcy costs to be 19.7% of the value of the firm measured just prior to bankruptcy.

However, Bris, Welch and Zhu (2006) show that bankruptcy costs are heterogeneous across

firms and types of bankruptcy. The estimation of the costs is also sensitive to the method-

ology. They conclude that the total bankruptcy costs range between 0% and 20% of firm

assets. It is difficult to know the magnitude of bankruptcy costs of large financial institutions.

Based on court filings, the total legal expenses of Lehman Brothers on its 2008 bankruptcy is

about $1.6 billion as of May 2012. Although this is a small fraction of the $307 billion assets

held by Lehman Brothers prior to bankruptcy, it is still growing and it does not include

other costs. In light the study by Bris et al. and the uncertainty of potential bankruptcy

costs of large banks, we chose the mid point of the range, 10%, as the bankruptcy costs in

our example.
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The risk-free rate is set to 3% because it is approximately the average five-year constant

maturity Treasury bond rate during the past ten years as of 2011. The average is based on

the monthly data provided on the Web page of the Federal Reserve Bank of St. Louis. We

choose a ten-year average for interest rate because the interest rate since 2008 is abnormally

low, which is generally not regarded as an interest rate environment in a normal economy.

It is impossible to calibrate the parameters of contingent capital from banks’ current and

past balance sheets because contingent capital is not yet widely held in banks. We set the

par value of the contingent capital to 5% in our example to leave room for 7-8% equity value

in view of the seven percent baseline equity capital requirement in Basel III.

The hypothetical addition of contingent capital will reduce corporate bond yield. For

this reason, we simply chose a bond yield that is moderately higher than the risk-free rate

and then set the parameters of asset volatility and jumps so that the bond is priced at par.
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Table and Figures

Table I
Numerical Examples for the Range of Multiple Equilibria

Parameter Notation GBM JD
Asset

Initial asset value A0 100.00 100.00
Risk-free interest rate r 3.00% 3.00%
Asset volatility σ 4.00% 4.00%
Arrival rate of jumps λ 4.00
Mean of log(jump size) µy −1.00%
Volatility of jump size σy 3.00%

Bond
Par value of bond B̄ 87.00 87.00
Coupon rate of bond b 3.34% 3.34%
Years to Maturity T 5.00 5.00
Bankruptcy cost ω 10.00% 10.00%

CC
Par value of CC C̄ 5.00 5.00
Coupon rate of CC c 0.00 0.00
Years to Maturity T 5.00 5.00
Trigger on equity value K 1.00 1.00
Conversion ratio m 5.00 5.00

Equity
Number of shares n 1.00 1.00

Value
Firm value F0 98.35 94.74
Bond value B0 88.03 87.00
Equity value S0 [5.86 , 6.46] [3.84 , 5.44]
CC value C0 [3.86 , 4.46] [2.30 , 3.90]
Price range 0.60 1.60



Figure 1 Multiple Equilibria in a One-Step Trinomial Tree Model

A. Bank’s asset value and bond value

sA0 = 100.00   
   

   
   

  s120.00 Probability = 0.25

s100.00 Probability = 0.50`````````````s 80.00 Probability = 0.25

sB0 = 87.50   
   

   
   

  s 90.00 no default

s 90.00 no default`````````````s 80.00 default

B. No conversion is an equilibrium

sCu
0 = 5.83   

   
   

   
  s 10.00 no conversion

s 6.67 convert to 2 shares`````````````s 0.00 default

sSu
0 = 6.67   

   
   

   
  s 20.00 = (120− 90− 10)/1

s 3.33 = (100− 90)/(1 + 2)`````````````s 0.00 default

C. Conversion is another equilibrium

sCc
0 = 8.33

= 2× 4.17

   
   

   
   

 s 20.00 = 2 shares × $10

s 6.67 = 2 shares × $3.33`````````````s 0.00 default

sSc
0 = 4.17

= (100− 87.50)/(1 + 2)

   
   

   
   

 s 10.00 = (120− 90)/(1 + 2)

s 3.33 = (100− 90)/(1 + 2)`````````````s 0.00 default



Figure 2 The Range of Multiple Equilibria

The range of multiple equity and CC prices depend on the asset volatility, the leverage in
terms of bond and CC, as well as the trigger level. The solid lines represent the upper and
lower bounds of the multiple equity prices, and the dot lines represent the bounds of CC
values. The parameters used for the figure are the same as those in the second-last column
of Table I, except the one that varies in a range indicated by the horizontal axis. For the
varying parameter, the value in Table I is indicated by the vertical dash line.
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Figure 3 Multiple Equilibria When Equity Issuance Is Allowed

A. Bank’s asset value and bond value
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B. If no issuance, there are two equilibria: (Cu
0 , S

u
0 ) and (Cc

0, S
c
0)

sCu
0 = 6.25

Cc
0 = 3× 3.13 = 9.38

   
   

   
   

 s 10.00 no conversion

s 7.50 convert to 3 shares`````````````s 0.00 default

sSu
0 = 6.25

Sc
0 = (100− 87.50)/(1 + 3) = 3.13

   
   

   
   

 s 20.00 = (120− 90− 10)/1

s 2.50 = (100− 90)/(1 + 3)`````````````s 0.00 default

C. Issuing half share gives (Ci
0, S

i
0), which dominates (Cc

0, S
c
0).

sCi
0 = 6.71    

   
   

   
 s 10.00 no conversion

s 8.42 convert to 3 shares`````````````s 0.00 default

sSi
0 = 5.26    

   
   

   
 s 15.44 = (123.16− 90)/1.5

s 2.81 = (102.63− 90)/(1.5 + 3)`````````````s 0.00 default



Figure 4 Multiple Equilibria under Financial Distress

A. An equilibrium without conversion
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B. An equilibrium with conversion

r

r

r

r

r

r

r

�
�
�
�
�
�
�
�
�
�

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q

��
��

��
��

��

PPPPPPPPPP

��
��

��
��

��

PPPPPPPPPP

A0 = 100.00
F0 = 100.00
B0 = 88.40
C0 = 6.24
S0 = 5.36

A1 = 106.00
F1 = 106.00
B1 = 88.40
C1 = 6.72
S1 = 10.88

A1 = 94.00
F1 = 94.00
B1 = 88.40
mS1 = 4.80
S1 = 0.80

A2 = 110.30
F2 = 110.30
B2 = 86.70
C2 = 6.24
S2 = 17.36

A2 = 97.82
F2 = 97.82
B2 = 86.70
C2 = 6.24
S2 = 4.88

A2 = 97.84
F2 = 97.84
B2 = 86.70
mS2 = 6.24
S2 = 4.90

A2 = 86.76
F2 = 86.76
B2 = 86.70
mS2 = 0.05
S2 = 0.01CC converts


